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Introduction 

Levenshtein distance is a string metric for measuring the difference between two sequences. Informally, 

the Levenshtein distance between two words is equal to the number of single-character edits required to 

change one word into the other. The term edit distance is often used to refer specifically to Levenshtein 

distance. 

The Levenshtein distance between two strings is defined as the minimum number of edits needed to 

transform one string into the other, with the allowable edit operations being insertion, deletion, or 

substitution of a single character. 

For example, the Levenshtein distance between "kitten" and "sitting" is 3, since the following three edits 

change one into the other, and there is no way to do it with fewer than three edits: 

1. kitten → sitten (substitution of 's' for 'k') 

2. sitten → sittin (substitution of 'i' for 'e') 

3. sittin → sitting (insertion of 'g' at the end). 

 
Implementation of Levenshtein Algorithm in Adeptia 
 
Here is snipped code for the implementation of Levenshtein Algorithm: 
 
       // Get the value from context variable 

  String firstString = (String) context.get("firstString"); 

  String secondString = (String) context.get("secondString"); 

 

  //String firstString = "kitten"; 

  //String secondString = "sitten"; 

  int cost= 0; 

 

  firstString = firstString.toLowerCase(); 

  secondString = secondString.toLowerCase(); 

  int[] costs = new int[secondString.length() + 1]; 

  for (int i = 0; i <= firstString.length(); i++) { 

   int lastValue = i; 

   for (int j = 0; j <= secondString.length(); j++) { 

    if (i == 0) 

     costs[j] = j; 

    else { 

     if (j > 0) { 

      int newValue = costs[j - 1]; 

      if (firstString.charAt(i - 1) != 

secondString.charAt(j - 1)) 

       newValue = 

Math.min(Math.min(newValue, lastValue), 

         costs[j]) + 1; 

      costs[j - 1] = lastValue; 

      lastValue = newValue; 

     } 

    } 

   } 

   if (i > 0) 



   cost= costs[secondString.length()] = lastValue; 

  } 

  //System.out.println(cost); 

            // Set the value in process context 

  context.put("Levenshtein_distance",cost); 

Adeptia Integration  

We can use this plug-in in Adeptia process to find the Levenshtein distance between two strings 

 

 
 
 


