

443 North Clark St, Suite 350
Chicago, IL 60654

Phone: (312) 229-1727

 1

Java Performance Tuning

This white paper presents the basics of Java Performance Tuning and its preferred
values for large deployments of Application Servers

 2

Java Performance Tuning

Garbage Collection

The Java programming language is object‐oriented and includes automatic garbage collection.
Garbage collection is the process of reclaiming memory taken up by unreferenced objects. For
best performance and stability, it is critical that the Java parameters for the virtual machine be
understood and managed by the Adeptia Server deployment team. This section will describe the
various parts of the Java heap and then list some useful parameters and tuning tips for ensuring
correct runtime stability and performance of Adeptia application server.

The Java Heap

The Java heap is divided into three main sections: Young Generation, Old Generation and the
Permanent Generation as shown in the figure below.

Java Heap Description

Young Generation

The Eden Space of the Young Generation holds all the newly created objects. When this
generation fills, the Scavenge Garbage Collector clears out of memory all objects that are
unreferenced. Objects that survive this scavenge moved to the “From” Survivor Space. The

 3

Survivor Space is a section of the Young Generation for these intermediate‐life objects. It has
two equally‐sized subspaces “To” and “From” which are used by its algorithm for fast switching
and cleanup. Once the Scavenge GC is complete, the pointers on the two spaces are reversed:
“To” becomes “From” and “From” becomes “To”.

The Young Generation is sized with the ‐Xmn option on the Java command line. It should never
exceed half of the entire heap and is typically set to 1/2 of the heap for JVMs less than 1.5 GB
and to 1/3 of the heap for JVMs larger than 1.5 GB.

The Survivor Space in the Young Generation is sized as a ratio of one of the sub‐spaces to the
Eden Space – this is called the Survivor Ratio. For example, if ‐Xmn is set to 400m and
‐XX:SurvivorRatio is set to 4, then the total Survivor Space will be 133.2Mb with “To” and
“From” each being 66.6Mb and the Eden Space being 266.8Mb. The survivor ratio = 266.8
(Eden) / 66.6 (To) = 4.

Old Generation

Once an object survives a given number of Scavenge GCs, it is promoted (or tenured) from the
“To” Space to the Old Generation. Objects in this space are never garbage collected except in
the two cases: Full Garbage Collection or Concurrent Mark‐and‐Sweep Garbage Collection. If
the Old Generation is full and there is no way for the heap to expand, an Out‐of‐Memory error
(OOME) is thrown and the JVM will crash.

The Old Generation is sized with the ‐Xms and ‐Xmx parameters, where ‐Xms is the initial heap
size allocated at start up and ‐Xmx is the maximum heap size reserved by the JVM at start up. If
the heap size exceeds free memory on the system, swapping will occur and performance will be
seriously degraded.

Permanent Generation

The Permanent Generation is where class files are kept. These are the result of compiled classes
and JSP pages. If this space is full, it triggers a Full Garbage Collection. If the Full Garbage
Collection cannot clean out old unreferenced classes and there is no room left to expand the
Permanent Space, an Out‐of‐ Memory error (OOME) is thrown and the JVM will crash.

The Permanent Generation is sized with the ‐XX:PermSize and ‐XX:MaxPermSize parameters.
For example, to specify a start up Permanent Generation of 48Mb and a maximum Permanent
Generation of 128Mb, use the parameters: ‐XX:PermSize=48m ‐XX:MaxPermSize=128. It is
exceedingly rare that more than 128Mb of memory is required for the Permanent Generation.

Permanent Generation is tacked onto the end of the Old Generation. There
is also a small code cache of 50Mb for internal JVM memory management.
This means that the total initial heap size = ‐Xms + ‐XX:PermSize + ~50Mb

and that the maximum total heap size = ‐Xmx + ‐XX:+MaxPermSize +

~50Mb. For example, if –Xms/–Xmx are set to 512m and –
XX:PermSize/MaxPermSize are set to 128m, the total VM will actually about
700 Mb in size

 4

Default Garbage Collection Algorithms

Scavenge Garbage Collection

Scavenge Garbage Collection (also known as a Minor Collection) occurs when the Eden Space is
full. By default, it is single‐threaded but does not interrupt the other threads working on objects.
It can be parallelized but if too more Parallel GC Threads are specified than CPU cores where the
JVM is running, this can cause bottlenecks. For this reason, it is suggested to be careful in when
and where to use the parallel options.

Full Garbage Collection

A Full Garbage Collection (Full GC) occurs under these conditions:

The Java application explicitly calls System.gc(). This can be avoided by implementing the ‐
XX:+DisableExplicitGC parameter in the start up command for all Application Server JVMs.

The RMI protocol explicitly calls System.gc() on a regular basis under normal
operation. This can be avoided by implementing the ‐XX:+DisableExplicitGC
parameter in the start up command for all Application Server JVMs.

A memory space, either Old or Permanent, is full and to accommodate new objects or classes, it
needs to be expanded towards its max size, if the relevant parameters have different values. In
other words, if ‐Xms and ‐Xmx have different values and if the size of Old needs be increased
from ‐Xms towards ‐Xmx to accommodate more objects, a Full GC is called. Similarly, if
‐XX:PermSize and ‐XX:MaxPermSize have different values and the Permanent Space needs to
be increased towards ‐XX:MaxPermSize to accommodate new java classes, a Full GC is called.
This can be avoided by always setting ‐Xms and ‐Xmx as well as ‐XX:PermSize and
‐XX:MaxPermSize to the same value.

The Tenured Space is full and the Old Generation is already at the capacity defined by ‐Xmx. This
can be avoided by tuning the Young Generation so that more objects are filtered out before
being promoted to the Old Generation, by increasing the ‐Xmx value and/or by implementing
the Concurrent Mark‐and‐ Sweep (CMS) collector.

A Full Garbage collection is disruptive in the sense that all working threads
are stopped and one JVM thread then will scan the entire heap twice trying
to clean out unreferenced objects. At the same time, objects with finalizer
clauses are processed. Once the second scan is complete, if some objects on
the finalizer stack have not yet been processed, they are left on the queue
for the next Full GC. This is an expensive process which causes delays in
response time. The goal of tuning the JVM is to minimize the Full GCs while
ensuring that an OOME does not occur.

 5

Serial Collector

With the serial collector, both young and old collections are done serially (using a single CPU), in
a stop-the world fashion. That is, application execution is halted while collection is taking place.

Young Generation Collection: The live objects in Eden are copied to the initially empty survivor
To-space except for ones that are too large to fit comfortably in the To-space. Such objects are
directly copied to the old generation. The live objects in the occupied survivor space (From-
space) that are still relatively young are also copied to the other survivor space, while objects
that are relatively old are copied to the old generation. Note: If the To-space becomes full, the
live objects from Eden or From-space that have not been copied to it are tenured, regardless of
how many young generation collections they have survived. Any objects remaining in Eden or
the From-space after live objects have been copied are, by definition, not live, and they do not
need to be examined.

After a young generation collection is complete, both Eden and the formerly occupied survivor
space are empty and only the formerly empty survivor space contains live objects. At this point,
the survivor spaces swap roles.

Old Generation Collection: The old and permanent generations are collected via a mark-sweep-
compact collection algorithm. In the mark phase, the collector identifies which objects are still
live. The sweep phase “sweeps” over the generations, identifying garbage. The collector then
performs sliding compaction, sliding the live objects towards the beginning of the old generation
space (and similarly for the permanent generation), leaving any free space in a single contiguous
chunk at the opposite end.

Usage: Best suited for applications that run on client-class machines and that don’t have
requirement for low pause times.

Selection: The serial collector is automatically chosen as the default garbage collector on
machines that are not server-class machines. On other machines, the serial collector can be
explicitly requested by using the -XX:+UseSerialGC command line option.

Parallel Collector

These days, many Java applications run on machines with a lot of physical memory and multiple
CPUs. The parallel collector, also known as the throughput collector, was developed in order to
take advantage of available CPUs rather than leaving most of them idle while only one does
garbage collection work.

Young Generation Collection: The parallel collector uses a parallel version of the young
generation collection algorithm utilized by the serial collector. It is still a stop-the-world and
copying collector, but performing the young generation collection in parallel, using many CPUs,
decreases garbage collection overhead and hence increases application throughput.

Old Generation Collection: Old generation garbage collection for the parallel collector is done
using the same serial mark-sweep compact collection algorithm as the serial collector.

 6

Usage: Applications that can benefit from the parallel collector are those that run on machines
with more than one CPU and do not have pause time constraints, since infrequent, but
potentially long, old generation collections will still occur.

You may want to consider choosing the parallel compacting collector
(described next) over the parallel collector, since the former performs
parallel collections of all generations, not just the young generation.

Selection: The parallel collector is automatically chosen as the default garbage collector on
server-class machines (described later on in Ergonomics section). On other machines, the
parallel collector can be explicitly requested by using the -XX:+UseParallelGC command line
option.

Parallel Compacting Collector

The parallel compacting collector was introduced in J2SE 5.0 update 6. The difference between
it and the parallel collector is that it uses a new algorithm for old generation garbage collection.

Young Generation Collection: Young generation garbage collection for the parallel compacting
collector is done using the same algorithm as that for young generation collection using the
parallel collector.

Old Generation Collection: With the parallel compacting collector, the old and permanent
generations are collected in a stop-the-world, mostly parallel fashion with sliding compaction.
The collector utilizes three phases. First, each generation is logically divided into fixed-sized
regions. In the marking phase, the initial set of live objects directly reachable from the
application code is divided among garbage collection threads, and then all live objects are
marked in parallel. As an object is identified as live, the data for the region it is in is updated
with information about the size and location of the object.

The summary phase operates on regions, not objects. Due to compactions from previous
collections, it is typical that some portion of the left side of each generation will be dense,
containing mostly live objects. The amount of space that could be recovered from such dense
regions is not worth the cost of compacting them. So the first thing the summary phase does is
examine the density of the regions, starting with the leftmost one, until it reaches a point where
the space that could be recovered from a region and those to the right of it is worth the cost of
compacting those regions. The regions to the left of that point are referred to as the dense
prefix, and no objects are moved in those regions. The regions to the right of that point will be
compacted, eliminating all dead space. The summary phase calculates and stores the new
location of the first byte of live data for each compacted region. Note: The summary phase is
currently implemented as a serial phase; parallelization is possible but not as important to
performance as parallelization of the marking and compaction phases.

In the compaction phase, the garbage collection threads use the summary data to identify
regions that need to be filled, and the threads can independently copy data into the regions.
This produces a heap that is densely packed on one end, with a single large empty block at the
other end.

 7

Usage: Beneficial for applications that are run on machines with more than one CPU. In
addition, the parallel operation of old generation collections reduces pause times and makes the
parallel compacting collector more suitable than the parallel collector for applications that have
pause time constraints.

Selection: By specifying the command line option -XX:+UseParallelOldGC.

Concurrent Mark-Sweep (CMS) Collector

For many applications, end-to-end throughput is not as important as fast response time. Young
generation collections do not typically cause long pauses. However, old generation collections,
though infrequent, can impose long pauses, especially when large heaps are involved. To
address this issue, the HotSpot JVM includes a collector called the concurrent mark-sweep
(CMS) collector, also known as the low-latency collector.

Young Generation Collection: The CMS collector collects the young generation in the same
manner as the parallel collector.

Old Generation Collection: Most of the collection of the old generation using the CMS collector
is done concurrently with the execution of the application.

A collection cycle for the CMS collector starts with a short pause, called the initial mark, that
identifies the initial set of live objects directly reachable from the application code. Then, during
the concurrent marking phase, the collector marks all live objects that are transitively reachable
from this set. Because the application is running and updating reference fields while the marking
phase is taking place, not all live objects are guaranteed to be marked at the end of the
concurrent marking phase. To handle this, the application stops again for a second pause, called
remark, which finalizes marking by revisiting any objects that were modified during the
concurrent marking phase. Because the remark pause is more substantial than the initial mark,
multiple threads are run in parallel to increase its efficiency.

At the end of the remark phase, all live objects in the heap are guaranteed to have been
marked, so the subsequent concurrent sweep phase reclaims all the garbage that has been
identified

The CMS collector is the only collector that is non-compacting. That is, after it
frees the space that was occupied by dead objects, it does not move the live
objects to one end of the old generation. This saves time, but since the free
space is not contiguous, it leads to fragmentation.

Although the collector guarantees to identify all live objects during a marking
phase, some objects may become garbage during that phase and they will
not be reclaimed until the next old generation collection. Such objects are
referred to as floating garbage.

 8

Usage: Use the CMS collector if your application needs shorter garbage collection pauses and
can afford to share processor resources with the garbage collector when the application is
running. Typically, applications that have a relatively large set of long-lived data (a large old
generation), and that run on machines with two or more processors, tend to benefit from the
use of this collector. The CMS collector should be considered for any application with a low
pause time requirement.

Selection: By specifying the command line option -XX:+UseConcMarkSweepGC

Ergonomics - Automatic Selections and Behaviour
Tuning

In the J2SE 5.0 and later releases, default values for the garbage collector, heap size, and
Hotspot virtual machine (client or server) are automatically chosen based on the platform and
operating system on which the application is running. These automatic selections better match
the needs of different types of applications, while requiring fewer command line options than in
previous releases.

In addition, a new way of dynamically tuning collection has been added for the parallel garbage
collectors. With this approach, the user specifies the desired behavior, and the garbage collector
dynamically tunes the sizes of the heap regions in an attempt to achieve the requested
behavior. The combination of platform-dependent default selections and garbage collection
tuning that uses desired behavior is referred to as ergonomics. The goal of ergonomics is to
provide good performance from the JVM with a minimum of command line tuning.

Automatic Selection of Collector, Heap Sizes, and Virtual
Machine

A server-class machine is defined to be one with

• 2 or more physical processors and
• 2 or more gigabytes of physical memory

This definition of a server-class machine applies to all platforms, with the exception of 32-bit
platforms running a version of the Windows operating system.

On machines that are not server-class machines, the default values for JVM, garbage collector,
and heap sizes are:

• Client JVM
• Serial garbage collector
• Initial heap size of 4MB
• Maximum heap size of 64MB

On a server-class machine, the JVM is always the server JVM unless you explicitly specify the –
client command line option to request the client JVM. On a server-class machine running the
server JVM, the default garbage collector is the parallel collector. Otherwise, the default is the
serial collector.

 9

On a server-class machine running either JVM (client or server) with the parallel garbage
collector, the default initial and maximum heap sizes are

• Initial heap size of 1/64th of the physical memory, up to 1GB. (Note that the minimum
initial heap size is 32MB, since a server-class machine is defined to have at least 2GB of
memory and 1/64th of 2GB is 32MB.)
• Maximum heap size of 1/4th of the physical memory, up to 1GB.

Otherwise, the same default sizes as for non-server-class machines are used (4MB initial heap
size and 64MB maximum heap size). Default values can always be overridden by command line
options.

Behaviour-based Parallel Collector Tuning

In the J2SE 5.0 and later releases, a new method of tuning has been added for the parallel
garbage collectors, based on desired behavior of the application with respect to garbage
collection. Command line options are used to specify the desired behavior in terms of goals for
maximum pause time and application throughput.

Maximum Pause Time Goal

The maximum pause time goal is specified with the command line option:

-XX:MaxGCPauseMillis=n

This is interpreted as a hint to the parallel collector that pause times of n milliseconds or less are
desired. The parallel collector will adjust the heap size and other garbage collection-related
parameters in an attempt to keep garbage collection pauses shorter than n milliseconds. These
adjustments may cause the garbage collector to reduce overall throughput of the application,
and in some cases the desired pause time goal cannot be met.

The maximum pause time goal is applied to each generation separately. Typically, if the goal is
not met, the generation is made smaller in an attempt to meet the goal. No maximum pause
time goal is set by default.

Throughput Goal

The throughput goal is measured in terms of the time spent doing garbage collection and the
time spent outside of garbage collection (referred to as application time). The goal is specified
by the command line option:

-XX:GCTimeRatio=n

The ratio of garbage collection time to application time is:

1 / (1 + n)

 10

For example -XX:GCTimeRatio=19 sets a goal of 5% of the total time for garbage collection. The
default goal is 1% (i.e. n= 99). The time spent in garbage collection is the total time for all
generations. If the throughput goal is not being met, the sizes of the generations are increased
in an effort to increase the time the application can run between collections. A larger generation
takes more time to fill up.

Key Command Line Option Related to Garbage
Collection

Garbage Collector Selection

Option Garbage Collector Selected

–XX:+UseSerialGC Serial

–XX:+UseParallelGC Parallel

–XX:+UseParallelOldGC Parallel compacting

–XX:+UseConcMarkSweepGC Concurrent mark–sweep (CMS)

Garbage Collector Statistics

Option Description

–XX:+PrintGC Outputs basic information at every garbage collection.

–XX:+PrintGCDetails Outputs more detailed information at every garbage collection.

–XX:+PrintGCTimeStamps Outputs a time stamp at the start of each garbage collection
event. Used with –XX:+PrintGC or –XX:+PrintGCDetails to show
when each garbage collection begins.

Options for the Parallel and Parallel Compacting Collectors

Option Default Description

–XX:ParallelGCThreads=n The number of CPUs Number of garbage collector threads.
Start at 2 but ensure that sum of

ParallelGCThreads across all JVMs is less
than number of available CPU cores.

–XX:MaxGCPauseMillis=n No default Indicates to the collector that pause
times of n milliseconds or less are

desired.

–XX:GCTimeRatio=n 99 Number that sets a goal that 1/(1+n) of
the total time be spent on garbage

collection.

Options for the CMS Collector

Option Default Description

–XX:+CMSIncrementalMode Disabled Enables a mode in which the
concurrent phases are done

 11

incrementally, periodically stopping
the concurrent phase to yield back the
processor to the application.

–XX:+CMSIncrementalPacing Disabled Enables automatic control of the
amount of work the CMS collector is
allowed to do before giving up the
processor, based on application
behaviour.

–XX:ParallelGCThreads=n The number of
CPUs

Number of garbage collector threads
for the parallel young generation
collections and for the parallel parts of
the old generation collections. Start at
2 but ensure that sum of
ParallelGCThreads across all JVMs is
less than number of available CPU
cores.

‐XX:+CMSParallelRemarkEnabled - Enable Parallel Remarking in CMS.

-XX:+UseParNewGC - The parallel young generation
collector is similar to the parallel
garbage collector (-XX:+UseParallelGC)
in intent and differs in
implementation. Most of the above
description for the parallel garbage
collector (-XX:+UseParallelGC)
therefore applies equally for the
parallel young generation collector.
Unlike the parallel garbage collector (-
XX:+UseParallelGC) this parallel young
generation collector can be used with
the concurrent low pause collector
that collects the tenured generation.

Heap and Generation Sizes

Option Default Description

-Xmn<x><m|g> - Young Generation Size, suffixed
with m (Mb) or g (Gb).

Recommendation:
For heap size < 1.5G : 1/2 of –Xmx
For heap size > 1.5G : 1/3 of –Xmx

For CMS: 1/4 of -Xmx

–Xms<x> Platform and
machine

dependent

Initial size, in bytes, of the heap.

–Xmx<x> Platform and Maximum size, in bytes, of the

 12

machine
dependent

heap.

–XX:MinHeapFreeRatio=minimum
and –XX:MaxHeapFreeRatio=maximum

99 Target range for the proportion of
free space to total heap size.
These are applied per generation.
For example, if minimum is 30 and
the percent of free space in a
generation falls below 30%, the
size of the generation is expanded
so as to have 30% of the space
free. Similarly, if maximum is 60
and the percent of free space
exceeds 60%, the size of the
generation is shrunk so as to have
only 60% of the space free.

–XX:NewSize=n Platform–
dependent

Default initial size of the new
(young) generation, in bytes.

–XX:NewRatio=n 2 on client JVM,
8 on server JVM

Ratio between the young and old
generations. For example, if n is 3,
then the ratio is 1:3 and the
combined size of Eden and the
survivor spaces is one fourth of
the total size of the young and old
generations.

–XX:SurvivorRatio=n 32 Ratio between each survivor space
and Eden. For example, if n is 7,
each survivor space is one–ninth
of the young generation (not one–
eighth, because there are two
survivor spaces).

–XX:MaxPermSize=n Platform–
dependent

Maximum size of the permanent
generation. Set it to 128m. (keep
initial and maximum permanent

generation size same to
discourage address map

swapping)

Other useful command line options

Option Default Description

‐XX:+DisableExplicitGC - Ignore all calls to System.gc()

